
Expressivity of STRIPS-like and HTN-like
Planning
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Abstract. It is widely believed, that the expressivity of STRIPS and
STRIPS-like planning based on actions is generally lower than the ex-
pressivity of Hierarchical Task Network (HTN) and HTN-like planning,
based on hierarchical decomposition. This would mean that a HTN-like
planner can generally solve more domains than a STRIPS-like planner
with the same extensions. In this paper, we show that both approaches,
as they are practically used, are identically expressive and can solve all
domains solvable by a Turing machine with finite tape (i.e. solvable by
a common computer).

1 Introduction

Two most known and used approaches to domain-independent symbolical plan-
ning are STRIPS-like (based on operators) and HTN-like (based on hierarchical
decomposition) planning. STRIPS-like planning is older and based on creating
a plan as a chain of actions, while each of these actions has its precondition
and results. HTN-like planning is based on hierarchical decomposition - the
planner starts from an initial task and decomposes it into more primitive tasks
according to decomposition information given to the planner. The primitive non-
decomposable tasks form the final plan.

HTN was created as an extension to the ”classical” STRIPS-like planning,
allowing the planner to use additional information about the hierarchical decom-
position.

As hierarchical decomposition is an extension of operator-based planning, the
question of expressivity arose: Is the expressivity of HTN-like planning larger
than the expressivity of STRIPS-like planning? Can HTN-like planning solve
more domains than STRIPS-like planning?

This question was answered positively in the past[2]. The proof was, however,
based on the assumption, that the HTN planner can use an infinite set of symbols
to mark the tasks. This can be true for the theoretical HTN model, but this
assumption cannot be fulfilled by any practically usable planner, implemented
on a common computer.

This paper shows, that HTN-like planning expressivity is identical to STRIPS-
like planning expressivity, under the assumption that we use any restriction,
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which makes the HTN-planning process decidable. This assumption is not very
restricting, as every implemetnation of HTN-like planning uses this kind of re-
striction to end the computation in finite time (even if unsuccesfull).

In this section, we will provide a brief overview of STRIPS-like and HTN-like
planning. Section 2 provides discussion on expressivity of both approaches. In
section 3, we show that STRIPS can emulate the finite tape Turing machine with
the same time complexity. Finally, section 4 describes a conversion of HTN-like
domains to STRIPS-like domains.

1.1 STRIPS

The basic principle of STRIPS[3] and STRIPS-like planning is finding a sequence
of actions, which will modify the initial state of the world into the final state
of the world. The state of the world is expressed in the form of a set of literals.
The planner adds actions incrementally to the plan, trying to create the correct
transformation from initial to the final state.

The STRIPS planning is based on operators in the form Op = (pre, del, add),
where pre is a precondition, which has to be valid immediately before the oper-
ator is applied, add / del are the sets of literals added / deleted to / from the
world state after the operator ends. An executed operator (added to a plan) is
called action.

Since STRIPS (35 years ago), there are plenty different planners based on
the idea STRIPS used. Most planners are not limited to the basic STRIPS
formalism, but have extensions like resources, parallel execution, timed actions,
sensory actions and coordination actions, conditional and contingent actions etc.

The basic algorithm of STRIPS-like planning is based on sequential adding
actions to a plan. When starting from the initial state, we speak about forward
chaining, when starting from the final state, it is backchaining and if we add
actions on an arbitrary place of the plan, then it is plan-space search. We con-
struct the plan based only on the knowledge of the operators’ precondition and
effects and the current world state. No additional information is provided to the
planner, which is the main difference to the HTN-like approaches, described in
the next section.

1.2 Hierarchical Task Network (HTN)

The HTN[7] and HTN-like approaches are based on hand-made hierarchical de-
composition of the problem domain. The planner is provided with domain knowl-
edge, expressed as the possible decompositions of tasks into subtasks. Tasks can
be primitive (directly executable) and non-primitive. Non-primitive tasks have
to be decomposed into other tasks. Each non-primitive task has one or more
lists of tasks, it can be decomposed into. This list of tasks, together with other
restrictions (like precedence of tasks, variable binding or mutual exclusion) is
called task network.

The creation of a plan starts with one or more initial tasks, which are de-
composed into simpler tasks, until all tasks are decomposed into primitive tasks.
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If the decomposition is not possible (e.g. because of colliding restrictions), the
planner backtracks and creates a different decomposition.

The decomposition may be fully ordered, but there are also planners which
allow interleaving of subtasks of different tasks (e.g. SHOP2[6]).

HTN can also be seen as an augmentation of action-based planning by a
grammar, pruning the plan space[4].

The basic HTN algorithm is as follows:

1. Insert the initial tasks into the plan.

2. If the plan contains only primitive tasks, success.

3. Choose one non-primitive task from the plan.

4. Replace the chosen task by its subtasks according to some task network.

5. Resolve interactions and conflicts in the plan.

If not possible, backtrack.

6. Continue with step 2.

Similar to STRIPS-like planning, HTN-like planners also introduce a variety
of extensions like resources handling, parallel execution, timed actions, sensoric
and coordination actions. HTN-like planners have an important role in planning
for multi-agent systems. Planners like STEAM[8] or PGP/GPGP[5] introduce
coordination and negotiation mechanisms, allowing multiple agents to partici-
pate in fulfilling common tasks. While STEAM introduces team tasks, which are
decomposed into tasks for individual agents, in PGP, each agent has its own ini-
tial task that has to be fulfilled and parts of the decomposition tree can overlap
for different agents (Figure 1).

Fig. 1. An example of decomposition tree for STEAM (a) and PGP (b).

2 Expressivity

It is widely believed, that HTN-like planning expressivity is larger than the ex-
pressivity of STRIPS-like planning. By expressivity, we mean the set of planning
domains the planning system is able to solve.
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There is a proof[2], based on converting the planning problem to grammars
and then showing, that STRIPS-like planning corresponds with regular gram-
mars and HTN-like planning corresponds with context-free grammars. This way,
it is shown that the HTN-like planning covers a wider class of possible planning
domains.

The main difference, causing this result, is the fact, that the theoretical model
of HTN uses an infinite set of symbols for marking the tasks, thus having the
possibility of an infinite plan-space even in a simple domain. On the other hand,
STRIPS and STRIPS-like planning have a finite plan-space, if not using some
extensions (usually considered to be non-standard). Some STRIPS-like planners
(like the FHP[9]) extend the basic formalism by including function symbols,
allowing them to express undecidable problems.

It is clear, that the theoretical HTN model is more expressive than the basic
STRIPS-like planning. On the other hand, the theoretical HTN model is not
usable in practice, as it is undecidable, even under severe restrictions. HTN
remains generally undecidable even if no variables are allowed, as long as there
is the possibility that a task network can contain two non-primitive tasks without
specifying the order of their execution[2].

As the theoretical model of HTN is undecidable, the computation could take
an unlimited amount of time and we cannot even reliably predict the time in
advance, so it is not (and cannot be) used in practice. In practice, modifications
are used, restricting the plan space to finite and making the problem decidable
[2].

The main HTN restrictions used are:

1. Restricting the length of a plan. As the maximal length of a plan becomes
finite, the space of possible plans becomes finite, as we choose from a finite
number of possibilities, when adding a task to the plan.

2. Restricting the methods to be acyclic. Any task can be expanded up to a
finite depth, which is lower than the total number of tasks.

3. Restricting the task network to be totally ordered. Tasks are achieved seri-
ally, one after another, so subtasks cannot interleave.

Each of these restrictions alone is enough to make the HTN-like planning
decidable, thus usable in practice. All current HTN-based planners use at least
one of these restrictions (or their slight modifications). Therefore, it is better to
use the term ”HTN-like” planning for planning based on the HTN model with
one of these three restrictions, rather than for the unrestricted theoretical model
of HTN.

Naming convention. The term ”HTN-like planning” shall be used for plan-
ning based on the HTN model with a restriction, making its plan-space finite
and the planning problem decidable.

For the scope of this paper, we adhere to this naming convention.
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Theorem 1. Every HTN-like domain can be expressed as a STRIPS-like do-
main. Every STRIPS-like domain can be expressed as a HTN-like domain. There-
fore, the expressivity of STRIPS-like planning is identical to the expressivity of
HTN-like planning.

Proof (sketch). The plan-space of HTN-like planning domain is finite; therefore
the state-space of the domain is finite. For a finite state-space, we can construct
a STRIPS-like domain by simply enumerating all possible state transitions as
STRIPS actions. As a result, STRIPS-like planning expressivity is not smaller
than the expressivity of HTN-like planning. The second half of the proof, show-
ing that HTN-like planning expressivity is not smaller than the expressivity of
STRIPS-like planning, is constructive, can be found in [2] and is based on the
transformation of STRIPS-like domain to a flat HTN-like domain with decom-
position depth 0. ut

Enumerating all states of a domain is not very practical and leads to expo-
nential number of actions. In the next sections, we will show how to transform
a HTN-like domain into a STRIPS-like domain in low-order polynomial time,
using STRIPS for emulating the HTN decomposition.

3 STRIPS as a Turing Machine with Finite Tape

The previous sections showed, that STRIPS-like and HTN-like planning expres-
sivity is identical. In this section, we will provide a simple construction of a
Turing machine with finite tape using STRIPS. This way, we show that STRIPS
expressivity (and therefore also HTN-like planning expressivity) is equal to the
expressivity of a Turing machine with finite tape.

Turing machine is a tuple:

M = (Q, Γ, b, δ, q0, F ) (1)

where Q is a finite set of states, Γ is a finite set of tape symbols, b ∈ Γ is the
blank symbol, δ = Q × Γ → Q × Γ × {L,R} is the transition function (L and
R are the shift left and right symbols respectively), q0 is the initial state and
F ⊆ Q is the set of final states.

In the STRIPS emulation, the set of states Q will be represented by a set
of constants CQ. Γ is represented by set of constants CΓ . Current state is ex-
pressed by the literal state(q), position of the reading head by position(p) and
the symbol on a specific tape location is expressed as the literal symbol(γ, p).
The transition function is defined by the literal transition(q, g, q′, g′,m), where
q ∈ CQ and g ∈ CΓ are the old state and symbol on the tape, q′ ∈ CQ and
g′ ∈ CΓ are the new state and tape symbol and m ∈ {LEFT,RIGHT} is the
direction of head movement. The following operators encode the Turing machine
with finite tape:

operator: stateTransition

pre: state(q), position(p), symbol(g, p), transition(q, g, q’, g’, m),
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translate

del: state(q), symbol(g, p), translate

add: state(q’), symbol(g’, p), move(m)

operator: moveHeadLeft

pre: move(LEFT), position(from), leftOf(to, from)

del: move(LEFT), position(from)

add: position(to), translate

operator: moveHeadRight

pre: move(RIGHT), position(from), leftOf(from, to)

del: move(RIGHT), position(from)

add: position(to), translate

operator: finish

pre: state(q), final(q), translate

del: state(q), translate

add: stop

As we can see, the machine operates in two steps: state transition and head
movement. The machine stops if one of the final states is reached, marked with
literal final(q).

Prior to starting the STRIPS reasoning, we have to ”create” the structure of
the tape by adding literals leftOf(left, right) for each two neighbouring states.
With extensions of STRIPS allowing arithmetic operators, we would instead use
the + and − operator to move right and left.

The tape sequence representation for a tape of length n uses n − 1 literals.
On the other hand, we have to remember, that the memory contents is also
stored in the form of literals, so the n memory places are represented by 2n− 1
literals, increasing the memory complexity only constantly, comparing to the
Turing machine.

The emulated finite tape Turing machine is deterministic if only one literal
transition(q, g, q′, p′,m) exists for some (q, g). Otherwise, the machine is non-
deterministic.

We could also add input to the machine, represented in the same way like
the tape. This would, of course, not change the expressivity.

Theorem 2. The STRIPS domain defined above emulates a Turing machine
with finite tape. The emulation time complexity is constantly higher than the
complexity of the emulated machine.

Proof (sketch). The initial literal set is state(q0) together with the encoding of
the Turing machine as described above. The final condition for the STRIPS plan-
ner is set to stop. It is easy to see, that if the Turing machine stops, the STRIPS
planner creates a plan leading from the initial to the final state and each two
following steps of the plan (stateTransition, moveHeadLeft/Right) correspond to
one step of the Turing machine. If the finite tape Turing machine doesn’t stop,
no plan is found. If the emulated machine is deterministic, exactly one action is
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executable at each state and the plan derivation process is deterministic. If the
emulated machine is non-deterministic, the STRIPS planner chooses one action
for execution at each state, the same way the machine has to choose one. If the
decision doesn’t lead to the final state, the planner backtracks and systematically
searches all alternatives until the final state is found or no more alternatives are
left (i.e. the machine doesn’t stop). ut

Turing machine with an infinite tape is an important theoretical concept. On
the other hand, the computers we use in practice have only finite memory and
can be simulated by a Turing machine with finite tape.

The equality of expressivity of STRIPS and Turing machine with finite tape
has an important implication. It means that STRIPS can express all problems
solvable by a computer. The expression as a STRIPS domain can, of course, be
sometimes very artificial and clumsy and computational complexity can be much
larger. Nevertheless, STRIPS expressive power should not be underestimated.

4 STRIPS as HTN Emulator

The previous section shows, that it is possible to express a finite tape Turing ma-
chine as a STRIPS domain. Together with the possibility to express a HTN-like
domain (with restrictions to be decidable) using the finite tape Turing machine,
it is obvious, that STRIPS can express an arbitrary HTN-like domain.

This section provides a conversion of a HTN-like domain to STRIPS in low-
order polynomial time. The conversion is based on emulating the decomposition
of tasks by STRIPS plan derivation. The final STRIPS plan expresses the order
of decomposition.

Let’s say there is a task network n = (A, {B,C}), allowing the decomposition
of task A into B and C. We create two operators Astart, Astop and operators for
B and C. Astart adds literals (BAinit

, CAinit
) allowing the execution of B and

C. B can be decomposable again, so it again consists of operators Bstart, Bstop,
allowing its further decomposition. If B is a primitive task, it consists of only one
operator B. After B is processed (operator Bstop or B finished), it adds literal
BAfinish

, which is a part of Astop precondition. This way, Astop is only executed
after all subtasks of A are fully decomposed or primitive. The initial state of the
STRIPS planner contains only the literal Sinit, allowing the start of the root
task S (or possibly several literals if there are more root tasks). The final state
contains the literal Sfinish, which is reached after the full decomposition of the
root task S and all its subtasks. Additionally, the final state may contain literals,
added in tasks marked as goal tasks.

If task interleaving is allowed, then we have to avoid situations when a fin-
ished subtask allows the ending of a parent task from a different task network.
Therefore, we have to create different operators for a subtask, which is in more
task networks. For the same reason, we have to create separate operators for a
parent task, which is in more task networks. As a result, a task being parent in
n task networks and a subtask in m networks is converted to m ∗ n operators.
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The HTN to STRIPS conversion algorithm for an acyclic decomposition
graph is expressed by the following pseudocode. We use the shortened notation
of an operator Op = (pre, del, add), where pre, del and add are the precondition,
delete and add sets of the operator Op. An overview of corresponding concepts
of HTN-like and STRIPS-like domain after the conversion can be found in table
1.
for each task A

if A is a decomposition of some task B, for each B

if A is primitive

add operator

AB = (A.pre ∪ {ABinit}, A.del ∪ {ABinit}, A.add ∪ {ABfinish})
else

for each task network ni = (A, {Cj|j}) add operators

AiBstart = (A.pre ∪ {ABinit}, {ABinit}, {CjAinit})
AiBstop = ({CjAfinish}, A.del ∪ {CjAfinish}, A.add ∪ {ABfinish})

else

if A is primitive

add operator

A = (A.pre ∪ {Ainit}, A.del ∪ {Ainit}, A.add ∪ {Afinish})
else

for each task network ni = (A, {Cj|j}) add operators

Aistart = (A.pre ∪ {Ainit}, {Ainit}, {CjAinit})
Aistop = ({CjAfinish}, A.del ∪ {CjAfinish}, A.add ∪ {Afinish})

for each initial task S

add literal Sinit to the initial state

add literal Sfinish to the goal state

Table 1. Corresponding concepts of HTN and STRIPS emulation of HTN

HTN STRIPS

primitive task A operator A

non-primitive task A operators Aistart , Aistop

task network ni = (A, {Cj |j}) operators Aistart , Aistop ; CjAistart
, CjAistop

or CjAi

adding task A as a subtask of B adding literal ABinit into the actual state

choosing one of the possible de-
compositions of A

choosing one applicable operator AiBstart with literal
ABinit in the precondition

decomposing A using the task
network ni = (A, {Cj |j})

executing the sequence of operators AiBstart ;
CjAstart , CjAstop or CjA; AiBstop

If necessary, parameters (i.e. variables and constants) can be passed from the
decomposed task A to its subtask C by adding parameters to the literal CAinit .
Other constraints among tasks, like task precedence or mutual exclusion can be
simply expressed by adding literals to the operators. For example if we want
operator A to precede operator B, we simply add a literal to the add part of A
and to the pre part of B. This will prevent B being executed before A.



Expressivity of STRIPS-like and HTN-like Planning 9

Theorem 3. The algorithm above converts an acyclic HTN-like domain to an
equivalent STRIPS-like domain. The STRIPS-like domain time complexity is
constantly higher than the complexity of the initial HTN-like domain.

Proof (sketch). The plan derivation in the resulting STRIPS-like domain copies
the decomposition of the initial HTN-like domain. For every decomposition of
some task A (i.e. choosing a suitable task network and adding its subtasks {Bj}
to the plan), there is exactly one Astart action, one action BjA for every primitive
task from {Bj}, one literal BjAstart

for every non-primitive task from {Bj} and
one Astop action. Actions representing subtasks of A are never executed before
Astart or after Astop. The STRIPS planning algorithm only chooses actions at a
point, when a HTN-like planner would choose a task to decompose and a task
network to be used for the decomposition. This means, we have exactly one
STRIPS action for every step of a HTN-like planner and exactly one decision of
the STRIPS planner for every decision of the HTN-like planner. ut

If we want to use cyclic decomposition graphs (i.e. a task can be decomposed
into itself after some steps), we have to restrict the domain to a maximal depth
of decomposition or to be fully ordered (see section 2 Expressivity) in order to
have a decidable domain.

For a fully ordered domain, we simply add precedence restrictions on opera-
tors.

If we want to restrict the maximal depth of decomposition while having a
cyclic and not fully ordered domain, we have to mark the actions to differentiate
decompositions of the same task by the same task network in a cyclic decompo-
sition. This can be done by creating a sequence of symbols (like the finite tape
in the previous section), which are then used for marking actions representing
one decomposition. We simply add an incrementing action (similar to the move-
HeadRight from the previous section) after each Astart action, while the current
”counter” value is a parameter of Astart and this value is carried between oper-
ators representing the same task network using the BAinit

and BAfinish
literals.

This finite set of marking symbols is the equivalent of task marking symbols
used in HTN-like planners.

Many planners (based on HTN or STRIPS) allow different extensions to the
basic HTN, like handling resources, allowing variables and arithmetic operators,
allowing concurrency, timed actions or planning with uncertainty. According to
Theorem 2, all extensions of HTN-like planning (as long as the problem re-
mains computable) can be transformed to STRIPS, perhaps increasing compu-
tational complexity. On the other hand, most extensions are common for both
approaches, so it is possible to modify the conversion algorithm introduced in
this section to achieve the same time complexity of the planning process.

5 Conclusions

The concept of HTN is nothing more (but nothing less) than allowing the user
to provide the planning engine with additional heuristic information about how
to construct a plan, but does not increase the domain-space.
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Nevertheless, HTN is a very useful and user-friendly concept, as we can see
on the large number of practical uses.

This paper shows that STRIPS-like planning can be used for the same do-
mains, HTN-like planning (with restrictions causing it to be decidable) can be
used for (i.e. the expressivity of both approaches is identical). Moreover, the
domains can be converted from HTN-like to STRIPS-like and vice versa in low
order polynomial time, thus allowing the theoretical results for STRIPS-like
planning to be used for HTN-like planning and vice versa.

Finally, this paper shows that STRIPS expressivity is equal to the expressiv-
ity of a Turing machine with finite tape, i.e. all problems that can be solved by
a (common) computer can also be solved by STRIPS. This is rather a theoreti-
cal result than a practically usable conversion. However, it places the lower and
upper bound on both, STRIPS-like and HTN-like planning expressivity. Addi-
tionally, complexity results for different STRIPS-like and HTN-like domains can
make use of Turing machines formalism.
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